Global Sensitivity Analysis for a Comprehensive Char Conversion Model in Oxy-fuel Conditions

نویسندگان

  • Troy Holland
  • Thomas H. Fletcher
چکیده

Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. However, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. This work focuses on the sensitivity of a recent comprehensive char conversion code named CCK, which treats surface oxidation and gasification reactions as well as the processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work the CCK code was adapted for the conditions of an oxy-coal system and subjected to global sensitivity analysis techniques in an effort to rank fundamental input parameters in order of importance. Comprehensive char conversion codes have dozens of fundamental parameters, some of which are not well-defined. Global sensitivity analysis was used to identify the most important submodels in order to direct additional research on model improvement. Results of this analysis showed that the annealing model, the oxidation reaction order, the swelling model, and the mode of burning parameter are the most influential and therefore prime candidates for improvement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulations of oxy-coal combustion in Youngdong 100 MWe retrofit boiler

Demonstration of oxy-coal combustion is being planned for the old Youngdong unit 1 boiler in South Korea. The boiler is to be retrofitted to an opposed-wall-firing type with 100 MWe capacity for demonstration of oxy-fuel combustion while maintaining the original furnace shape of downshot firing. It is to be operated under oxy-coal combustion mode during demonstration periods while continuing co...

متن کامل

3rd Oxyfuel Combustion Conference IMPACT OF CO2 ON BIOMASS DEVOLATILISATION, NITROGEN PARTITIONING AND CHAR COMBUSTION; A DROP TUBE FURNACE ANALYSIS

Biomass oxy-combustion is attracting considerable attention in recent times because it can achieve negative CO2 emission. While different fundamental issues of oxy-coal combustion are being tackled and pilot demonstrations have been conducted at various scales, little is known about the behaviour of biomass under oxy-fuel combustion. This paper investigates and presents the results of the devol...

متن کامل

A Model for Nitrogen Chemistry in Oxy-Fuel Combustion of Pulverized Coal

In this work, a model for the nitrogen chemistry in the oxy-fuel combustion of pulverized coal has been developed. The model is a chemical reaction engineering type of model with a detailed reaction mechanism for the gas-phase chemistry, together with a simplified description of the mixing of flows, heating and devolatilization of particles, and gas solid reactions. The model is validated by co...

متن کامل

Sensitivity analysis of parameters affecting carbon footprint of fossil fuel power plants based on life cycle assessment scenarios

In this study a pseudo comprehensive carbon footprint model for fossil fuel power plants is presented. Parameters which their effects are considered in this study include: plant type, fuel type, fuel transmission type, internal consumption of the plant, degradation, site ambient condition, transmission and distribution losses. Investigating internal consumption, degradation and site ambient con...

متن کامل

Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres

The thermal reactivity and kinetics of five coal chars, a biomass char, and two coal/biomass char blends in an oxy-fuel combustion atmosphere (30%O2-70%CO2) were studied using the non-isothermal thermogravimetric method at three heating rates. Fuel chars were obtained by devolatilization in an entrained flow reactor at 1273 K under N2 and CO2 atmospheres.Three nth-order representative gas-solid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016